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Abstract  

Tensile strain is the relative length of deformation exhibited by a specimen subjected to a tensile force. An artificial neural 

network (ANN) was employed to predict the tensile strain of the weldment. One hundred welded specimens of mild steel, 

measuring 60mm x 40mm x10mm, were prepared and calculated using the VWACgauge. The results were employed to train 

ANN. The research produced an R2 of 86% in comparison to the experimental result on a fitted line plot using regression 

analysis, while correlation analysis obtained in the training and validation exercise from ANN was over 90%. Results of the study 

have shown that ANN is a robust predictive tool in welding, which could help reduce trial and error in welding processes.  
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1. Introduction 

In welding, tensile strain can affect the quality and durability of the weld joint. In a study by Li et al. (2021), it was 

found that increasing the tensile strain of the weld joint resulted in a reduction in the fatigue life of the joint. 

Furthermore, in a related study by Zhang et al. (2021), it was observed that increasing the tensile strain of the weld 

joint also decreased its fracture toughness. A welded joint is obtained when two clean surfaces are brought into 

contact with each other, and either pressure, heat, or both are applied to create a strong metallurgical bond. The 

tendency of atoms to bond is the fundamental basis of welding. A non-linear relationship exists between welding 

process parameters and weld quality (Narang et al., 2017). Narang et al. (2011) explained that TIG welding is done 

in a controlled atmosphere using a tungsten electrode, which produces an arc to melt the metal. Direct current (DC) 

or Alternating Current of High Frequency (ACHF) enables the resulting continuous and stable arc without touching 

the metal electrodes. TIG is becoming the most preferred technology because it has the cleanest weld bead and 

produces no debris or metal slag. Other researchers also studied the TIG parameter using a Fuzzy Logic controller, 

and the result found that the fuzzy clustering technique was adequate for establishing the relationship between the 

input process parameters and the outputs. 

Chkwunedum et al. (2024) developed models for optimizing (minimizing) the weld time of mild steel weldment 

using response surface methodology and an artificial neural network. The input factors used in this research study 

are current, voltage, and gas flow rate. The output parameter is the weld time. The welding process used for the 

experimental welding is tungsten inert gas (TIG) welding. An adequately optimized weld time will produce a quality 

weld with the desired strength. The RSM analysis gave the optimal solutions for each input factor with current as 
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180.00Amps, voltage as 21.672Volts, and gas flow rate as 15.504L/min. The optimal solution for the output factor, 

weld time, is 44.000 seconds. The optimum results were achieved with a desirability of 83.62%. Analysis of 

variance results indicated that the gas flow rate input factor has the most significant effect on the output variable 

under consideration. The artificial neural network predicted an optimal solution for the weld time response factor as 

53.71292Secs. It showed an overall strong correlation (R) between the input factors and the output parameter of 

99.893%. They recommended that the models be used for design and application. However, the optimal solution of 

the artificial neural network analyses will produce a better and higher quality weld because of its higher Regression 

(R) value, and thus, suggested for practical application and systematic decision making. 

The shape and dimensions of the weld bead are essential because these factors determine the wall thickness limits 

that can be built and influence the quality of the surface finish. The four main welding parameters are the welding 

current, arc voltage, welding speed, and wire-feed speed. Three important keys to the welding process's success are 

preheating the substrate (base metal), arc-length monitoring, and controlling the heat input. The influence of welding 

parameters such as current ratio and pulse frequency on the weld pool shape shows that for stainless steel, the choice 

of the peak current, background current, and pulsed frequency considerably affects the weld pool shape. 

2.0 Materials and methods 

The study involved ameliorating mild steel heat-treated welded joints was carried out. This work considered three 

input parameters: welding current, welding voltage, and gas flow rate, with tensile strain as the response or 

measured parameter.  

2.1 ANN Generation of input data 

Input data employed in the training, validation, and testing were obtained from a series of batch experiments based 

on the central composite design of the experiment under varied welding currents, welding voltage, and gas flow 

rates. A complete factorial central composite design of an experiment with six center points and three replicates 

resulted in 20 experimental runs used as the input data for Amadhe et al. (2023). The data were randomly divided 

into three subsets to represent the training (70%), validation (15%) and testing (15%). The validation data were 

employed to assess the performance and the generalization potential of the trained network, while the testing data 

were used to test the quality of the network. To avoid the problem of weight variation, which can subsequently 

affect the efficiency of the training process, the input and output data were first normalized between 0.1 and 1.0 

using the normalization equation (Sinan et al., 2011) presented in Equation 1 

1.0
minmax

min +
−

−
=

xx

xx
xi          (1) 

where, 

xi = the normalized value of the input and output data 

min; and xmax the minimum and maximum value of the input and output data  

x the input and output data. 

2.2 Selection of training algorithm and hidden neurons  

Input and output data training resulting in network architecture design is paramount in applying neural networks to 

data modeling and Prediction. Two factors were considered to obtain the optimal network architecture with the most 

accurate input and output data understanding. First was the selection of the most accurate training algorithm, and 

second, the number of hidden neurons. Based on this consideration, different training algorithms and hidden neurons 
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were selected and tested to determine the best training algorithm and accurate number of hidden neurons that will 

produce the most accurate network architecture. Selectivity was based on (r2 and MSE). 

 2.3 Network Training/Performance of ANN 

A learning rate of 0.01, momentum coefficient of 0.1, target error of 0.01, analysis update interval of 500, and a 

maximum training cycle of 1000 epochs was used. Three runs of 1000 epochs were used to train the network. In 

addition, cross-validation data representing about 15% of the total input data were introduced to monitor the training 

progress and prevent the network from memorizing the input data instead of learning, a common problem associated 

with overtraining. The training progress was checked using the mean square error (MSE) graph for training and 

cross-validation. 

2.4 Network Testing/Validation 

To test the efficiency of the trained network, 15% of the input data were introduced to the network Augustine et al. 

(2023). Plate 1 shows the Universal Pull Tester used to determine the tensile strain of the welded specimen. 

 

Plate 1: Universal pull tester tester         

3.0 Result and Discussion 

3.1  Prediction of Responses Using Artificial Neural Network 

One of the fundamental challenges with response surface methodology (RSM) is the inability to predict the response 

variables without the experiment's design accurately. Therefore, RSM's performance depends on the beauty of the 

experimental design. Therefore, a predictive model such as an artificial neural network (ANN) was employed to 

predict the response variables beyond the scope of experimentation. To train a neural network for predicting a feed 

forward back propagation algorithm was used. The network's input layer uses the hyperbolic target (tan-sigmoid) 

transfer function to calculate the layer output from the network input. In contrast, the output layer uses the linear 

(purely) transfer function. The number of hidden neurons was set at 10 neurons per layer, and the network 

performance was monitored using the mean square error of regression (MSEREG). The network interphase for 

predicting impact energy is presented in Figure 1. 
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Figure 1: Network properties interphase for predicting weld Tensile Strain response 

Figure 1 presents the configuration interphase for a neural network, where all parameters were set, and the feed-

forward backdrop was chosen amongst other network types to yield the best results. Current, voltage, and gas flow 

rate information provided in Table 1 were inputted into ANN to output the Tensile Strain response obtained.  

 

Figure 2: Network training diagram for predicting Tensile Strain responses 

Figure 2 presents the neural network diagram for predicting the Tensile Strain responses. The data division 

algorithm was set to random (dividend), the training algorithm was set to Levenberg-Marquardt (trail), because in 

most cases it is robust and finds a solution even if it starts very far off the final minimum and the performance 

algorithm was set to Mean squared error (me). 
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Figure 3: Performance curve for the trained network to predict Tensile Strain responses 

Figure 3 presents the performance curve for the trained network. The best validation performance was obtained at 

epoch 5. In MATLAB software, an epoch can be thought of as a completed iteration of the training procedure of 

your artificial neural network. Once all the vectors in your training set have been used or gone through your training 

algorithm, one epoch has been attained Usman et al. (2021). Thus, an epoch's "real-time duration" depends on the 

training method used. The best Prediction for the Tensile Strain responses was achieved at epoch 5, although 11 

epochs were used in the iteration process. 

 

Figure 4: Neural network gradient plot for predicting Tensile Strain responses 

Figure 4 shows the number of epochs used during the training process. One epoch signifies one complete algorithm 

training. 11 epochs were used, and Figure 4 shows that the best Prediction was achieved at the fifth epoch. From the 

dotted red lines for validation checks, it could be seen that the lowest failure was at epoch 5. 
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Figure 5: Regression plot of training, validation, and testing for Tensile Strain responses 

Figure 5 presents the training, validation, and testing plot with a correlation coefficient (R) of over 90%, which 

signifies a robust prediction for the Tensile Strain. The dotted diagonal line on each plot indicates the line of best fit, 

which indicates a perfect prediction and a correlation of 1. 

Table 1: Experimentally observed value vs. ANN predicted result of Tensile Strain responses. 

S/N 
Input parameters 

Exp ANN 

Responses Prediction 

Current voltage GFR Tensile Strain Tensile Strain 

1 165.000 17.500 14.500 0.190 0.187 

2 180.000 16.000 16.000 0.210 0.205 

3 150.000 19.000 16.000 0.240 0.235 

4 165.000 17.500 14.500 0.180 0.187 

5 165.000 17.500 14.500 0.190 0.187 

6 165.000 20.023 14.500 0.250 0.255 

7 180.000 19.000 16.000 0.280 0.276 

8 165.000 17.500 14.500 0.180 0.187 

9 150.000 19.000 13.000 0.170 0.174 

10 165.000 17.500 14.500 0.190 0.187 

11 180.000 16.000 13.000 0.200 0.204 

12 139.773 17.500 14.500 0.150 0.147 

13 180.000 19.000 13.000 0.260 0.256 

14 165.000 14.977 14.500 0.180 0.177 

15 190.227 17.500 14.500 0.220 0.225 

16 165.000 17.500 11.977 0.210 0.205 

17 165.000 17.500 17.023 0.250 0.256 

18 150.000 16.000 13.000 0.150 0.153 

19 150.000 16.000 16.000 0.190 0.193 

20 165.000 17.500 14.500 0.190 0.187 
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Table 1 compares the experimental and ANN-predicted values for Tensile Strain responses. The Regression 

Analysis for tensile strain obtained from the fitted line plot of EXP versus ANN produced equation 2 with Table 2 as 

its model summary 

EXP = 0.02655 + 0.8457 ANN       (2) 

Table 2: Model Summary for ANN Tensile strain 

S R-sq R-sq(adj) 

0.0137181 86.16% 85.39% 

 

4.0 Conclusion  

The study has developed and applied a predictive expert model to optimize and predict the tensile strain of TIG mild 

steel weld using an artificial neural network. Consequently, the ANN model was observed to have a very high 

predictive reliability value and correlation coefficient (R) of over 90%, which signifies a robust prediction for the 

Tensile Strain.   

5.0 Recommendation 

. A model is recommended to be developed that will harmonize tensile strength and tensile strain 

 

 

Nomenclature  

ACHF  Alternating Current of High Frequency 

ANN  Artificial Neural Network 

DC  Direct Current 

GFR  Gas Flow Rate 

MSE  Mean Square Error 

MSERG  Mean Square Error of Regression 

R  Regression 

RSM  Response Surface Methodology 

TIG  Tungsten Inert Gas 
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