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1. Introduction 

Rotating equipment is the backbone of various industrial processes, and its failure can have severe consequences on 

production, safety, and profitability. The importance of maintaining these machines cannot be overemphasized. Traditional 

maintenance approaches have been widely used, but they have limitations. Reactive maintenance involves fixing equipment after 

it fails. This approach is costly, time-consuming, and can lead to prolonged downtime. Preventive maintenance involves scheduling 

maintenance at regular intervals, regardless of equipment condition. This approach can lead to unnecessary maintenance, waste 

resources, and does not guarantee the prevention of failure. Predictive maintenance uses condition-monitoring techniques to predict 

equipment failure. This approach has shown promise but relies heavily on human interpretation and analysis. 

The need for a more efficient, effective, and proactive maintenance approach has led to the exploration of machine learning 

in maintenance optimization. Machine learning (ML) is a subset of artificial intelligence (AI) that enables machines to learn from 

data and make predictions or decisions without being explicitly programmed. In maintenance optimization, ML can be applied to 

predict equipment failures, optimize maintenance schedules, and reduce downtime. Machine learning can analyze vast amounts of 

data, identify patterns, and make predictions, making it an attractive solution for optimizing maintenance. By leveraging machine 

learning, industries can predict equipment failures accurately, optimize maintenance schedules, reduce downtime and maintenance 

costs, and improve equipment reliability and performance. In today's fast-paced industrial environment, maintaining the health and 

performance of critical equipment is paramount to ensuring operational efficiency, productivity, and profitability. Rotating 
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equipment, such as pumps, motors, and gearboxes, plays a vital role in various industries, including oil and gas, manufacturing, 

and power generation. However, these complex machines are prone to failures, which can lead to costly downtime, reduced 

productivity, and even safety hazards. 

Traditional maintenance approaches, such as reactive and preventive maintenance, have been widely used to mitigate these 

risks. However, these methods have limitations, including inefficiencies, high costs, and inability to predict failures accurately. 

The advent of machine learning (ML) and its applications in maintenance optimization has revolutionized the way industries 

approach equipment maintenance. 

Machine learning, a subset of artificial intelligence, enables machines to learn from data and make predictions or decisions 

without being explicitly programmed. By harnessing the power of ML, industries can unlock new possibilities for maintenance 

optimization, including predictive maintenance, condition-based maintenance, and real-time monitoring. This article explores the 

potential of ML in maintenance optimization, using a case study on rotating equipment in industries, to demonstrate how ML can 

improve equipment reliability, reduce downtime, and enhance overall operational efficiency. 

The focus of this study is on the maintenance of rotating industrial equipment with particular attention to pump operational 

faults and maintenance modelling. Pumps are devices used to move fluids from one place to another. The operating principle of 

pumps is hinged on creating mechanical pressure or suction to push or pull the fluid through pipes or channels. A typical pump 

shown in Fig. 1 has two main purposes [1] viz: 

i. Transfer of liquid from one place to another place (e.g. water from an underground aquifer into a water storage tank) 

ii. Circulate liquid around a system (e.g. cooling water or lubricants through machines and equipment). 

 

 

                             Fig. 1- Hydro (Centrifugal) Pump [1]  

 Pumps are of various types and have been classified based on mechanical configuration, type of power and the type of service 

they are used for [2] as shown in Fig. 2.   

 

                                 Fig. 2-Classification of pumps [2] 
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Machinery breakdowns and production interruptions have a significant economic impact, making effective maintenance crucial. 

Maintenance approaches have evolved from Reliability Centered Maintenance (RCM) to Total Productive Maintenance (TPM), 

recognizing maintenance's role in optimizing reliability and productivity. 

However, maintenance can be challenging due to its cost and resource implications. A smart maintenance plan can help balance 

these limitations by: 

• Controlling facility conditions 

• Predicting maintenance costs 

• Scheduling production pauses 

• Managing resources and parts 

Predictive maintenance, powered by machine learning, offers a solution. By analyzing sensor data and equipment conditions, a 

well-trained model can predict maintenance needs, enabling proactive measures that reduce downtime and improve efficiency. 

Machine learning algorithms like gradient boosting and random forest can analyze large datasets to identify patterns and predict 

equipment faults. This allows companies to anticipate maintenance needs, minimizing production interruptions and maximizing 

profits.  

Adopting predictive maintenance and machine learning in today's competitive market can drive innovation and improve production 

processes. Numerous authors have contributed to various aspects of predictive maintenance, machine learning, and data analysis. 

These contributions include time-series forecasting, anomaly detection, ensemble methods, feature selection, outlier detection, 

semi-supervised learning, and deep learning. For instance, [3] proposed a time-series forecasting approach using Long short-term 

memory (LSTM) networks to predict equipment failures, achieving improved accuracy. Author [4] wrote a comprehensive book 

on predictive analytics, covering its applications and power in predicting various outcomes. Author [5] conducted a thorough 

survey on anomaly detection techniques, covering statistical, machine learning, and data mining approaches. Work by [6] discussed 

ensemble methods in machine learning, including bagging, boosting, and stacking, to improve model performance. The research 

by [7] introduced variable and feature selection techniques, highlighting their importance in machine learning and data analysis. 

Author [8] surveyed outlier detection methodologies, including statistical, machine learning, and hybrid approaches. The work by 

[9] addressed limited labelled data challenges in predictive maintenance using semi-supervised learning techniques. Also, [10] 

surveyed predictive maintenance using machine learning techniques, covering various approaches and applications. The research 

by [11] introduced deep learning techniques for image and speech recognition, including convolutional and recurrent neural 

networks. Authors [12] conducted a case study on the impact of predictive maintenance on manufacturing performance, 

demonstrating improved efficiency and reduced downtime. The work by [13] optimized predictive maintenance using machine 

learning algorithms and real-time data, improving maintenance efficiency. The research by [14] developed a hybrid machine-

learning model for predictive maintenance of industrial equipment, combining multiple algorithms for better performance. Authors 

[15] conducted a comprehensive review of clustering methods for anomaly detection in predictive maintenance, highlighting their 

applications and challenges. The study by [16] applied reinforcement learning to maintenance scheduling for industrial equipment, 

optimizing maintenance decisions. The work by [17] compared machine learning algorithms for predictive maintenance, evaluating 

their performance and suitability. Authors [18] published a research report on the predictive maintenance market, forecasting 

growth and trends. The study by [19] investigated predictive maintenance in the South African energy sector, analyzing operational 

outcomes and challenges. The research by [20] reviewed the integration of deep learning with predictive maintenance, discussing 

applications and future directions. Author [21] wrote a foundational book on machine learning, covering algorithms and 

applications. The study by [22] demonstrated the use of predictive analytics for aircraft maintenance, showcasing its benefits in a 

case study. Author [23] published an annual performance report highlighting the importance of predictive maintenance in railway 

operations. The work by [24] presented a case study on the impact of predictive maintenance on mining operations in Brazil, 

highlighting its benefits and challenges. In the area of predictive maintenance applications, [25] implemented predictive 

maintenance in the automotive industry (Toyota case study). The work by [26] analyzed the impact of predictive maintenance on 

agricultural machinery in Brazil. Author [27] conducted an empirical study on predictive maintenance in semiconductor 

manufacturing in Japan. The study by [28] investigated predictive maintenance for medical equipment in UK hospitals. In the area 

of machine learning for predictive maintenance, [29] analyzed the performance of ensemble learning methods for predictive 

maintenance. The work by [30] used clustering-based techniques for anomaly detection in predictive maintenance. The study by 

[31] integrated machine learning with Internet of Things (IoT) technologies for predictive maintenance in smart manufacturing. 

Authors [32] surveyed semi-supervised learning for predictive maintenance. Some authors also worked on deep learning for 

predictive maintenance. For example, [33] applied deep learning for predictive maintenance in manufacturing (case study). The 

study by [34] surveyed deep learning for predictive maintenance. Hence, the integration of predictive maintenance and machine 

learning has emerged as a transformative force, driving operational efficiency across industries. The diverse contributions from 

scholars highlight the vast potential of these technologies to optimize maintenance strategies, reduce downtime, and enhance 

overall production processes. 
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2.  Materials and Methods 

Both primary and secondary sources data were utilized in this study, which include: 

❖ Datasets: Both primary and secondary historical maintenance data, equipment sensor data, and operational data from a 

manufacturing outfit using centrifugal pump (a rotating equipment).  

❖ Machine learning algorithms: Decision tree, random forests, and support victor machine (SVM) to analyze data and 

predict equipment failures. 

❖ Programming languages: Python, R, or Julia for implementing machine learning models and data analysis. 

❖ Libraries and frameworks: Scikit-learn, TensorFlow, PyTorch, or Keras for machine learning, and Pandas, NumPy, or 

Matplotlib for data manipulation and visualization. 

❖ Case studies: Real-world examples from industries like manufacturing, oil and gas, or power generation to demonstrate 

the application of machine learning in maintenance optimization. 

❖ Academic papers: Research articles and studies on machine learning, maintenance optimization, and condition monitoring 

of rotating equipment. 

❖ Software tools: CMMS (Computerized Maintenance Management System) data, equipment monitoring software, or 

specialized machine learning platforms. 

2.2 Methods 

Methods employed in the study include: 

✓ Data collection: Historical maintenance records systematically collected over a four-year period, from June 2020 to June 

2024; equipment sensor data; and operational data from the aforesaid manufacturing outfit that uses centrifugal pump. 

The manufacturing outfit does not want its name to be mentioned in the study and consequently, is referred to as X 

Company hereafter. 

✓ Data preprocessing: The collected data are cleaned, filtered, and transformed into suitable formats for analysis. 

✓ Feature engineering: Relevant features are selected and created from the data to improve model performance. 

✓ Machine learning model development: Various machine learning algorithms (decision trees, random forests, SVM) are 

trained and tested to predict equipment failures. 

✓ Model evaluation: Metrics like accuracy, precision, recall, etc. are used in assessment of the model performance. 

✓ Hyperparameter tuning: Model parameters are optimized to improve performance. 

✓ Cross-validation: The k-fold cross-validation techniques is used to ensure model generaliz-ability. 

✓ Case study analysis: Application of the machine learning models to real-world scenarios in X Company using rotating 

equipment. 

✓ Comparison with traditional methods: Evaluating the performance of machine learning models against traditional 

maintenance optimization approaches. 

✓ Visualization: Using plots and charts to communicate findings and insights. 

✓ Statistical analysis: Applying statistical techniques to validate results and understand underlying patterns. 

 

3.3 A Case Study: 

Predictive Maintenance of Pumps in X Company Ltd. 

• Background: X Company Ltd. in Nigeria, operating 24/7, is faced with frequent pump failures, resulting in costly 

downtime and maintenance expenses. The parametric history for a selected month from 2020-2023 is presented in Table 

1. The company sought to implement a predictive maintenance approach using machine learning to optimize pump 

maintenance and reduce downtime. 

• Dataset: A 4 year historical data on a pump in X Company was obtained and used in the study, covering: 

i. Sensor readings (vibration, pressure, rotation speed) 

ii. Failure data (dates, types) 

Table 1- Pump Telemetry Analysis Report 

Timestamp Vibration Pressure rotation speed Failure Year 

6/1/2020 0:00 0.511092259 102.1816183 1518.384954 0 2020 

6/1/2020 1:00 0.384900642 100.1900174 1680.051118 0 2020 

6/2/2020 2:00 0.537569802 100.6001566 1623.894635 0 2020 

6/2/2020 3:00 0.439936131 103.0675899 1520.965942 0 2020 

,, ,, ,, ,, ,, 2020 

,, ,, ,, ,, ,, 2020 

,, ,, ,, ,, ,, 2020 

6//6/2022 8:00 0.394228907 103.2359797 1550.547016 0 2020 
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6/7/2023 0:00 0.511092259 102.1816183 1518.384954 0 2021 

6/1/2021 1:00 0.384900642 100.1900174 1680.051118 0 2021 

6/2/2021 2:00 0.537569802 100.6001566 1623.894635 0 2021 

6/2/2021 3:00 0.439936131 103.0675899 1520.965942 0 2021 

,, ,, ,, ,, ,, 2021 

,, ,, ,, ,, ,, 2021 

,, ,, ,, ,, ,, 2021 

6//6/2022 8:00 0.394228907 103.2359797 1550.547016 0 2021 

6/7/2023 0:00 0.511092259 102.1816183 1518.384954 0 2022 

6/1/2022 1:00 0.384900642 100.1900174 1680.051118 0 2022 

6/2/2022 2:00 0.537569802 100.6001566 1623.894635 0 2022 

6/2/2022 3:00 0.439936131 103.0675899 1520.965942 0 2022 

,, ,, ,, ,, ,, 2022 

,, ,, ,, ,, ,, 2022 

,, ,, ,, ,, ,, 2022 

6//6/2022 8:00 0.394228907 103.2359797 1550.547016 0 2022 

6/7/2023 0:00 0.511092259 102.1816183 1518.384954 0 2023 

6/1/2023 1:00 0.384900642 100.1900174 1680.051118 0 2023 

6/2/2023 2:00 0.537569802 100.6001566 1623.894635 0 2023 

6/2/2023 3:00 0.439936131 103.0675899 1520.965942 0 2023 

,, ,, ,, ,, ,, 2023 

,, ,, ,, ,, ,, 2023 

,, ,, ,, ,, ,, 2023 

6/6/2023 8:00 0.394228907 103.2359797 1550.547016 0 2023 

 

The X Company problem is solved following the above stated methods. 

2.4 Data Quality Check 

During data preprocessing, several issues were addressed to ensure data quality: 

1. Missing Values: The dataset was checked for missing values and found to be complete with no missing entries. This 

ensured that all records could be used in subsequent analyses without imputation. 

2. Inconsistent Data: The data was examined for inconsistencies and corrected where necessary. Values were verified to 

ensure they fell within expected ranges, and any anomalies were addressed to maintain data integrity. 

3. Outliers: Outliers were identified using statistical techniques and visualizations. Extreme values were reviewed, and 

adjustments were made if they were deemed erroneous. This step was crucial to avoid skewed results in the analysis. 

4. Data Normalization: Continuous variables such as vibration, pressure, and rotation speed were normalized to standardize 

the data. This normalization was essential for ensuring that all features contributed equally to model training. 

5. Data Consistency: The dataset was verified for consistent data types and formats across all columns. Corrections were 

made where discrepancies were found to ensure uniformity. 

Hence, thorough data quality checks, including addressing missing values, correcting inconsistencies, handling outliers, 

normalizing continuous variables, and ensuring data consistency, were performed to maintain the integrity and reliability of 

the dataset for analysis. 

 

3. Results and Discussion  

3.1 Dataset Summary 

The four-year operational dataset of the rotating pump in X Company covering the: timestamp, vibration, pressure, rotation speed, 

and failure comprises a total of 35,784 records. Key statistics for the variables are summarized in Table 2. 
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Table 2- Summary Statistics of the Dataset 

Column Count Mean Std Dev Min 25% 50% 75% Max 

Vibration 35784 0.5454 0.0887 0.1759 0.4721 0.5440 0.6205 0.8853 

Pressure 35784 102.2403 4.4470 85.2981 98.5180 102.1574 106.0000 115.9655 

Rotation Speed 35784 1410.688 71.2927 1198.049 1353.270 1408.225 1460.207 1892.624 

Failure 35784 0.0923 0.2895 0.0000 0.0000 0.0000 0.0000 1.0000 

 

The summary statistics provide insights into the distribution of each variable in the dataset: 

Implications of the summary statistics: 

1. Vibration: Moderate vibration levels with relatively low variability suggest a stable operation. However, the significant 

range indicates potential for excessive vibration, which may lead to equipment damage or failure. 

2. Pressure: Stable pressure levels with moderate variability suggest a well-controlled process. However, the moderate range 

indicates potential for pressure fluctuations, which may impact equipment performance. 

3. Rotation Speed: Moderate rotation speed with moderate variability suggests a stable operation. However, the significant 

range indicates potential for speed fluctuations, which may impact equipment performance or lead to failure. 

4. Failure: Relatively low failure rate with high variability suggests that failures are infrequent but significant. This highlights 

the importance of predictive maintenance and condition monitoring to minimize downtime and reduce maintenance costs. 

Overall, the summary statistics indicate a relatively stable operation with moderate variability in vibration, pressure, and 

rotation speed. However, the potential for excessive vibration, pressure fluctuations, and speed variations highlights the 

need for ongoing monitoring and maintenance to prevent equipment failure. 

 

 

Fig. 3. -  Time Series Analysis of Pump Performance Metrics (2020-2024) 

Fig. 3 illustrates the time series analysis of pressure, rotation speed, and vibration data for the X Company’s pump over a four-year 

period from mid-2020 to mid-2024. Where the plot, the distribution of "Pressure Over Time," shows the pressure fluctuating 

between 90 and 110 units, with noticeable drops occurring in mid-2021 and mid-2023. The distribution of "Rotation Speed Over 

Time," indicates that the rotation speed primarily remained between 1200 and 1600 RPM, with distinct peaks observed at similar 

intervals as the pressure drops. The distribution of  "Vibration Over Time," depicts vibration levels fluctuating between 0.2 and 

0.8 units, with marked increases during the same periods where anomalies were seen in pressure and rotation speed. These 

synchronized deviations suggest potential maintenance events or operational changes that impacted the pump's performance. 
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Fig. 4- Distribution of vibration, pressure, rotation speed, and failure status in pump operation 

Fig. 4 presents the distribution histograms for vibration, pressure, rotation speed, and failure status of the pump over the observed 

period. The  "Distribution of Vibration," shows that vibration data is approximately normally distributed, with a peak around 0.5 

units. The "Distribution of Pressure," displays a slightly skewed distribution centered around 100 units, with the majority of data 

falling between 95 and 105 units. The  "Distribution of Rotation Speed," reveals a bimodal distribution with two peaks around 

1400 and 1500 rpm, indicating two distinct operational modes or settings. Finally, "Distribution of Failure," shows a highly skewed 

distribution, where the majority of the observations indicate no failure (0), while a smaller fraction corresponds to failure (1). This 

suggests that failures were relatively rare in the dataset. 

3.3 Model Training Results and Discussions 

The results from the training phase of the classifiers used in this study Decision Tree, Random Forest, and SVM are presented 

below, including training accuracy, loss metrics, and any observed patterns or anomalies. These findings are further analyzed to 

highlight potential trends and model behaviour. 

Table 4- Model results overview 

Classifier Training 

Accuracy 

Test 

Accuracy 

Confusion Matrix Classification Report 

Decision 

Tree 

0.92 0.92 [[22742, 6], [2061, 239]] Precision: 0.92 (Class 0), 0.98 (Class 1)  

Recall: 1.00 (Class 0), 0.10 (Class 1)  

F1-Score: 0.96 (Class 0), 0.19 (Class 1)  

Macro Avg: 0.57 

Random 

Forest 

0.91 0.91 [[22748, 0], [2140, 160]] Precision: 0.91 (Class 0), 1.00 (Class 1)  

Recall: 1.00 (Class 0), 0.07 (Class 1)  

F1-Score: 0.96 (Class 0), 0.13 (Class 1)  

Macro Avg: 0.54 

SVM 0.91 0.91 [[9732, 0], [1004, 0]] Precision: 0.91 (Class 0), 0.00 (Class 1)  

Recall: 1.00 (Class 0), 0.00 (Class 1)  

F1-Score: 0.95 (Class 0), 0.00 (Class 1)  

Macro Avg: 0.48 

 

• Training Accuracy and Loss: All classifiers showed high training accuracy, with Decision Tree and Random Forest 

slightly outperforming SVM. However, a pattern of poor recall for Class 1 was observed across all classifiers, indicating 

potential challenges in correctly identifying instances of this class. 

• Patterns or Anomalies: An observed anomaly was the low recall for Class 1 in all models, particularly for the SVM, 

which did not classify any instances of Class 1 correctly. 
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Specifically, all the models perform well in detecting normal operation but struggle with detecting failures. Decision Tree and 

Random Forest show some ability to detect failures, but SVM fails to do so. This suggests that the models may be biased towards 

the majority class (normal operation) and require further tuning or data balancing to improve their ability to detect failures. 

3.4 Results and Discussions of the Hyperparameter Tuning 

The tuning process involved Grid Search with cross-validation for each classifier to find the optimal hyperparameters. Table 5 

summarizes the best parameters found: 

Table 5-.Hyper parameters for the various models 

Classifier Optimal Hyperparameters 

Decision Tree Max Depth: 15, Min Samples Split: 2, Min Samples Leaf: 1 

Random Forest Number of Trees: 100, Max Depth: None, Min Samples Split: 2, Min Samples Leaf: 1, Max Features: ‘auto’ 

SVM Kernel: ‘linear’, C: 1.0, Gamma: ‘scale’ 

 

These optimal hyperparameters provided the best performance for each classifier, as indicated by the training and test accuracies. 

I. Decision Tree Classifier 

The Decision Tree model performed well with a training accuracy of 92%. It achieved high precision and recall for the majority 

class (Class 0), but it struggled with the minority class (Class 1), as reflected in the low recall. The high accuracy indicates that the 

model is effective in distinguishing between the two classes, but the imbalance in class performance suggests that the model may 

not be capturing the minority class as effectively. 

 

Fig. 5- Decision Tree visualization 

Fig. 5 illustrates how the model makes decisions based on different features and thresholds. Each node in the tree represents a 

decision based on feature values, ultimately leading to classification outcomes. 

II. Random Forest Classifier 

The Random Forest model, with a training accuracy of 91%, shows similar performance characteristics to the Decision Tree. It 

effectively identifies the majority class (Class 0) but has low performance for the minority class (Class 1). The confusion matrix 

and classification report highlight that while the Random Forest has high precision for Class 0, its recall for Class 1 is significantly 

lower, indicating potential issues with class imbalance.  

III. Support Vector Machine (SVM): 

The SVM model achieved a test accuracy of 91%, but it exhibited a significant issue with class imbalance. The model only predicts 

the majority class (Class 0), resulting in a precision, recall, and F1-score of zero for the minority class (Class 1). This suggests that 

the SVM may need further tuning or alternative approaches to effectively handle imbalanced datasets. 

SVM hyperparameters such as the regularization parameter (C) and kernel type were tuned. The chosen parameters aimed to 

balance the trade-off between achieving a low training error and a low testing error, while addressing the class imbalance issue. 

Overall, the models showed varying performance levels, with Decision Tree and Random Forest exhibiting strong results for the 

majority class but struggling with the minority class, and SVM having difficulty due to class imbalance. 
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3.5 Model Evaluation 

3.5.1 Cross-validation results 

To comprehensively assess the performance of the classifiers, cross-validation was employed to evaluate their accuracy, precision, 

recall, F1 score, and AUC-ROC curve. The results for each classifier are summarized in Table 6, providing insights into their 

effectiveness and reliability. 

Table 6- Performance metrics summary 

Classifier Accuracy Precision 

(Class 0) 

Precision 

(Class 1) 

Recall 

(Class 0) 

Recall 

(Class 1) 

F1 Score 

(Class 0) 

F1 Score 

(Class 1) 

AUC-

ROC 
Decision 

Tree 

0.92 0.92 0.10 1.00 0.10 0.96 0.19 0.65 

Random 

Forest 

0.91 0.91 1.00 1.00 0.07 0.96 0.13 0.96 

 

3.5.2. Performance evaluation 

I. Decision Tree 

The Decision Tree classifier achieved an overall accuracy of 0.92. It demonstrated high precision and recall for Class 0 (negative 

cases), with values of 0.92 and 1.00, respectively. However, the classifier exhibited limitations in identifying Class 1 (positive 

cases), as reflected by its precision of 0.10 and recall of 0.10 for this class. The F1 score for Class 1 stands at 0.19, indicating 

challenges in balancing precision and recall for positive cases. The AUC-ROC score of 0.65 suggests a moderate ability to 

distinguish between the classes. 

Hyperparameters were tuned to optimize the depth of the tree, the minimum samples required to split an internal node, and the 

minimum samples required at a leaf node. The final model's parameters were selected to balance accuracy and generalization. 

II. Random Forest 

The Random Forest classifier presented a comparable overall accuracy of 0.91. It achieved excellent performance in identifying 

Class 0, with precision and recall both at 1.00. For Class 1, the model attained a perfect precision score of 1.00, but its recall 

was significantly low at 0.07. This discrepancy highlights the classifier's strength in avoiding false positives but challenges in 

detecting true positives. The F1 score for Class 1 is 0.13. Notably, the Random Forest's AUC-ROC score of 0.96 underscores 

its superior capability in class discrimination compared to the Decision Tree. 

 

Fig. 6- ROC curves 

RF hyperparameter tuning focused on the number of trees in the forest, the maximum depth of each tree, and the minimum 

samples required to split an internal node. The optimized parameters aimed to improve the model's robustness and 

classification performance. 

Overall, the Random Forest classifier outperforms the Decision Tree in terms of AUC-ROC and accuracy, showcasing its 

robustness in classifying the data more effectively. 
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3.5.3 Mean Time between failure (MTBF) 

Fig.7 shows the graph of predicted time to failure across various data points, with reference lines indicating the 1000 hours 

benchmark for maintenance schedule period of the pump and the predicted MTBF of 1150 hours from the selected model (Random 

Forest). This figure illustrates the variability in the time to failure predictions compared to the reference values, highlighting the 

effectiveness and accuracy of the model's predictions in relation to the MTBF.  

To optimize maintenance strategy, it is advised to take the pump out for maintenance around 1000 hours mark just before it gets 

to the MTBF to avoid the pump failure, hence reducing downtime and increasing the reliability of the pump. The MTBF graph 

demonstrates that while both models are effective, the Random Forest model aligns more closely with the expected operational 

benchmark. This makes it more suitable for practical application in predictive maintenance, ensuring optimal use of resources 

while maintaining high system reliability. 

 

Fig. 7. - Predicted Time to Failure with Mean Time between Failures (MTBF) 

3.5.4 Implications for maintenance strategies 
The superior performance of the Random Forest model suggests it is the most reliable tool for predicting equipment failures or 

anomalies. Its ability to handle class imbalances effectively makes it suitable for real-world scenarios where failure events are rare 

but critical. 

The Decision Tree’s results indicate that while it provides a good initial performance, further tuning and strategies are necessary 

to improve its robustness and address overfitting issues. 

The SVM’s performance underscores the importance of model selection and tuning. To enhance its effectiveness in maintenance 

applications, alternative approaches or additional preprocessing steps may be required. 

 

4.  Conclusions 

Machine learning-based predictive maintenance has the potential to revolutionize the way industries approach equipment 

maintenance, offering significant benefits in terms of reduced downtime, increased efficiency, and improved safety. By leveraging 

machine learning algorithms and data analytics, industries can predict equipment failures, optimize maintenance schedules, and 

reduce maintenance costs. The findings from the summary statistics and the time series analysis confirm that vibration, pressure, 

and rotation speed are key indicators of equipment health, with fluctuations in these metrics aligning with maintenance events. The 

study shows that while the Decision Tree and Random Forest models perform well in detecting normal operations, they struggle 

with failure prediction, primarily due to class imbalance. Random Forest emerged as the most reliable model for practical 

application, given its superior accuracy and alignment with Mean Time Between Failures (MTBF) predictions. 

These results are supported by various studies in the field. Author [3] demonstrated the effectiveness of Long Short-Term Memory 

(LSTM) networks for equipment failure prediction, aligning with this study's emphasis on the importance of time-series analysis 

for detecting anomalies. Studies by [5-6] further support the use of anomaly detection and ensemble methods, respectively, 

reinforcing the application of machine learning models like Random Forest in predictive maintenance. The studies by [12-13] 

highlighted similar gains in operational efficiency and maintenance optimization through machine learning, which is echoed in this 

study's recommendations for maintenance scheduling based on predictive insights. 

In line with the findings, future work may benefit from exploring additional model tuning and balancing techniques, such as data 

augmentation or semi-supervised learning, as recommended by [9] and [32], to improve the detection of rare but critical failure 

events. Ultimately, the integration of predictive maintenance with machine learning has the potential to significantly enhance 

equipment reliability, reduce downtime, and optimize resource use, as demonstrated across multiple industrial case studies. 

Final Thoughts: 

i. Machine learning-based predictive maintenance is a game-changer for industries with critical equipment. 
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ii. Early adopters will reap significant benefits and gain a competitive edge. 

iii. Collaboration between industry experts, vendors, and researchers is crucial for continued innovation and adoption. 

By embracing machine learning-based predictive maintenance, industries can unlock new possibilities for operational efficiency, 

cost savings, and improved safety, ultimately leading to a more sustainable and competitive future. 
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