Simulation and Modelling of Hydrogen Production Process using Proton Exchange Membrane and Alkaline Electrolysis- A review.

Authors

  • Victor Ibude
  • Chika Edith Mgbemena
  • David Obike Onuoha

Keywords:

Simulink; Electrolysers; Green Hydrogen; Clean Technology.

Abstract

This review provides a comprehensive analysis of modelling approach for hydrogen production processes employing Proton Exchange Membrane (PEM) and Alkaline Electrolysis technologies, implemented using MATLAB Simulink/Simscape. The systematic review revealed that for PEM electrolysis, emphasis is placed on intricate modelling of system components crucial for hydrogen production, transient responses, and the integration with renewable energy sources like photovoltaic modules. Conversely, studies on Alkaline electrolysis delve into the influence of structural parameters, operating conditions, efficiency and hydrogen production rates. By comparing and contrasting these approaches, the review elucidates the strengths and limitations of each methodology and their contributions to advancements in renewable energy-based hydrogen production systems. Furthermore, the review discusses future research directions and potential areas for optimisation and innovation in hydrogen production plant modelling using MATLAB Simulink/Simscape. This review identifies gaps in current research and proposes potential avenues for future investigation, with the aim of advancing our understanding and optimisation of hydrogen production process for a sustainable energy future.

References

Abdol Rahim, A. H., Tijani, A. S., Kamarudin, S. K., & Hanapi, S. (2016). An overview of polymer electrolyte membrane electrolyser for hydrogen production: Modelling and mass transport. In Journal of Power Sources (Vol. 309). https://doi.org/10.1016/j.jpowsour.2016.01.012

Acar, C., & Dincer, I. (2014). Comparative assessment of hydrogen production methods from renewable and non-renewable sources. In International Journal of Hydrogen Energy (Vol. 39, Issue 1). https://doi.org/10.1016/j.ijhydene.2013.10.060

Brezak, D., Kovač, A., & Firak, M. (2023). MATLAB/Simulink simulation of low-pressure PEM electrolyser stack. International Journal of Hydrogen Energy, 48(16), 6158–6173. https://doi.org/10.1016/j.ijhydene.2022.03.092

Burnat, D., Schlupp, M., Wichser, A., Lothenbach, B., Gorbar, M., Züttel, A., & Vogt, U. F. (2015). Composite membranes for alkaline electrolysis based on polysulfone and mineral fillers. Journal of Power Sources, 291. https://doi.org/10.1016/j.jpowsour.2015.04.066

Cipriani, G., Di Dio, V., Genduso, F., La Cascia, D., Liga, R., Miceli, R., & Ricco Galluzzo, G. (2014). Perspective on hydrogen energy carrier and its automotive applications. In International Journal of Hydrogen Energy (Vol. 39, Issue 16). https://doi.org/10.1016/j.ijhydene.2014.03.174

Dale, N. V., Mann, M. D., & Salehfar, H. (2008). Semiempirical model based on thermodynamic principles for determining 6 kW proton exchange membrane electrolyser stack characteristics. Journal of Power Sources, 185(2), 1348–1353. https://doi.org/10.1016/J.JPOWSOUR.2008.08.054

George, S., Sehgal, N., Rana, K. P. S., & Kumar, V. (2022). A comprehensive review on modelling and maximum power point tracking of PEMFC. In Cleaner Energy Systems (Vol. 3). https://doi.org/10.1016/j.cles.2022.100031

Hammoudi, M., Henao, C., Agbossou, K., Dubé, Y., & Doumbia, M. L. (2012). New multi-physics approach for modelling and design of alkaline electrolysers. International Journal of Hydrogen Energy, 37(19). https://doi.org/10.1016/j.ijhydene.2012.07.015

Hissel, D., Turpin, C., Astier, S., Boulon, L., & Bouscayrol, A. (2008). A review of existing modelling methodologies for PEM fuel cell systems. Fundamentals & Development of Fuel Cells, October 2015.

Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies. In Catalysis Today (Vol. 139, Issue 4). https://doi.org/10.1016/j.cattod.2008.08.039

Ismail, T. M., Ramzy, K., Elnaghi, B. E., Abelwhab, M. N., & El-Salam, M. A. (2019). Using MATLAB to model and simulate a photovoltaic system to produce hydrogen. Energy Conversion and Management, 185. https://doi.org/10.1016/j.enconman.2019.01.108

Ju, H. K., Badwal, S., & Giddey, S. (2018). A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production. In Applied Energy (Vol. 231). https://doi.org/10.1016/j.apenergy.2018.09.125

Kadier, A., Kalil, M. S., Abdeshahian, P., Chandrasekhar, K., Mohamed, A., Azman, N. F., Logroño, W., Simayi, Y., & Hamid, A. A. (2016). Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals. In Renewable and Sustainable Energy Reviews (Vol. 61). https://doi.org/10.1016/j.rser.2016.04.017

Kadier, A., Simayi, Y., Abdeshahian, P., Azman, N. F., Chandrasekhar, K., & Kalil, M. S. (2016). A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. In Alexandria Engineering Journal (Vol. 55, Issue 1). https://doi.org/10.1016/j.aej.2015.10.008

Kazim, A., & Veziroglu, T. N. (2001). Utilization of solar-hydrogen energy in the UAE to maintain its share in the world energy market for the 21st century. Renewable Energy, 24(2). https://doi.org/10.1016/S0960-1481(00)00199-3

Kritharas, P. P., & Watson, S. J. (2010). A comparison of long-term wind speed forecasting models. Journal of Solar Energy Engineering, Transactions of the ASME, 132(4). https://doi.org/10.1115/1.4002346

Laguna-Bercero, M. A. (2012). Recent advances in high temperature electrolysis using solid oxide fuel cells: A review. In Journal of Power Sources (Vol. 203). https://doi.org/10.1016/j.jpowsour.2011.12.019

Martinez, D., Zamora, R., Martinez, D., & Zamora, R. (2018). MATLAB simscape model of an alkaline electrolyser and its simulation with a directly coupled PV module INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH MATLAB Simscape Model of An Alkaline Electrolyser and Its Simulation with A Directly Coupled PV Module. In Article in International Journal of Renewable Energy Research (Vol. 8, Issue 1). https://www.researchgate.net/publication/323836993

Mohamed Albarghot, Mahmud Sasi, & Luc Rolland. (2016). MATLAB/Simulink Modelling and Experimental Results of a PEM Electrolyser Powered by a Solar Panel. Journal of Energy and Power Engineering, 10(12). https://doi.org/10.17265/1934-8975/2016.12.009

Nikolaidis, P., & Poullikkas, A. (2017). A comparative overview of hydrogen production processes. In Renewable and Sustainable Energy Reviews (Vol. 67). https://doi.org/10.1016/j.rser.2016.09.044

Ni, M., Leung, M. K. H., & Leung, D. Y. C. (2008). Technological development of hydrogen production by solid oxide electrolyser cell (SOEC). In International Journal of Hydrogen Energy (Vol. 33, Issue 9). https://doi.org/10.1016/j.ijhydene.2008.02.048

Niroula, S., Chaudhary, C., Subedi, A., & Thapa, B. S. (2023). Parametric Modelling and Optimisation of Alkaline Electrolyser for the Production of Green Hydrogen. IOP Conference Series: Materials Science and Engineering, 1279(1), 012005. https://doi.org/10.1088/1757-899x/1279/1/012005

Olanrewaju, F. B., Oboh, I. O., Adesina, O. A., Anyanwu, C. S., & Ewim, D. R. E. (2023). Modelling And Simulation Of Hydrogen Production Plant for Minimum Carbon Dioxide Emission. The Journal of Engineering and Exact Sciences, 9(1). https://doi.org/10.18540/jcecvl9iss1pp15394-01e

Rashid, M. M., Mesfer, M. K. Al, Naseem, H., & Danish, M. (2015). Hydrogen Production by Water Electrolysis: A Review of Alkaline Water Electrolysis, PEM Water Electrolysis and High Temperature Water Electrolysis. International Journal of Engineering and Advanced Technology, 3.

Sandeep, K. C., Kamath, S., Mistry, K., Kumar M, A., Bhattacharya, S. K., Bhanja, K., & Mohan, S. (2017). Experimental studies and modelling of advanced alkaline water electrolyser with porous nickel electrodes for hydrogen production. International Journal of Hydrogen Energy, 42(17). https://doi.org/10.1016/j.ijhydene.2017.03.154

Sapountzi, F. M., Gracia, J. M., Weststrate, C. J. (Kees J., Fredriksson, H. O. A., & Niemantsverdriet, J. W. (Hans). (2017).

Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. In Progress in Energy and Combustion Science (Vol. 58). https://doi.org/10.1016/j.pecs.2016.09.001

Schalenbach, M., Lueke, W., Lehnert, W., & Stolten, D. (2016). The influence of water channel geometry and proton mobility on the conductivity of Nafion®. Electrochimica Acta, 214. https://doi.org/10.1016/j.electacta.2016.08.010

Seetharaman, S., Balaji, R., Ramya, K., Dhathathreyan, K. S., & Velan, M. (2013). Graphene oxide modified non-noble metal electrode for alkaline anion exchange membrane water electrolysers. International Journal of Hydrogen Energy, 38(35). https://doi.org/10.1016/j.ijhydene.2013.09.033

Thanapalan, K. K. T., Williams, J. G., Liu, G. P., & Rees, D. (2008). MODELLING OF A PEM FUEL CELL SYSTEM. IFAC Proceedings Volumes, 41(2). https://doi.org/10.3182/20080706-5-kr-1001.00780

Tijani, A. S., Yusup, N. A. B., & Rahim, A. H. A. (2014). Mathematical Modelling and Simulation Analysis of Advanced Alkaline Electrolyser System for Hydrogen Production. Procedia Technology, 15. https://doi.org/10.1016/j.protcy.2014.09.053

Trasatti, S. (1999). Water electrolysis: Who first? Journal of Electroanalytical Chemistry, 476(1). https://doi.org/10.1016/S0022-0728(99)00364-2

Ursua, A., Sanchis, P., & Gandia, L. M. (2012). Hydrogen Production from Water Electrolysis : Current Status and Future Trends. Proceedings of the IEEE, 100(2).

Yigit, T., & Selamet, O. F. (2016). Mathematical modelling and dynamic Simulink simulation of high-pressure PEM electrolyser system. International Journal of Hydrogen Energy, 41(32), 13901–13914. https://doi.org/10.1016/j.ijhydene.2016.06.022

Zeng, K., & Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. In Progress in Energy and Combustion Science (Vol. 36, Issue 3). https://doi.org/10.1016/j.pecs.2009.11.002

Downloads

Published

2024-03-07

How to Cite

Ibude, V., Mgbemena, C. E., & Onuoha, D. (2024). Simulation and Modelling of Hydrogen Production Process using Proton Exchange Membrane and Alkaline Electrolysis- A review. INTERNATIONAL JOURNAL OF INDUSTRIAL AND PRODUCTION ENGINEERING, 2(1), 31–49. Retrieved from https://journals.unizik.edu.ng/ijipe/article/view/3150